TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content.

نویسندگان

  • Natalia Manzano-León
  • Jesús Serrano-Lomelin
  • Brisa N Sánchez
  • Raúl Quintana-Belmares
  • Elizabeth Vega
  • Inés Vázquez-López
  • Leonora Rojas-Bracho
  • Maria Tania López-Villegas
  • Felipe Vadillo-Ortega
  • Andrea De Vizcaya-Ruiz
  • Irma Rosas Perez
  • Marie S O'Neill
  • Alvaro R Osornio-Vargas
چکیده

BACKGROUND Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. OBJECTIVES We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. METHODS We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. RESULTS PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. CONCLUSIONS Variations in PM soil and PAH content underlie seasonal and PM size-related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. CITATION Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O'Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406-412; http://dx.doi.org/10.1289/ehp.1409287.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation in the composition and in vitro proinflammatory effect of urban particulate matter from different sites.

Spatial variation in particulate matter-related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We comp...

متن کامل

Determination of Polycyclic Aromatic Hydrocarbons in Ambient Urban Air

Polycyclic aromatic hydrocarbons (PAHS) have been determined in the atmosphere of Isfahan, Iran. Airborne particulate matter was sampled using a high-volume air sampler at roof-top level (~6m). Extraction of PAHS from airborne particulate matter has been performed using SFE system and the relationship between the extraction temperature and the recovery of PAHS</su...

متن کامل

Comparative gene responses to collected ambient particles in vitro: endothelial responses.

Epidemiologic studies associate exposure to ambient particulate matter (APM) with increased cardiovascular mortality. Since both pulmonary inflammation and systemic circulation of ultrafine particles are hypothesized as initiating cardiovascular effects, we examined responses of potential target cells in vitro. Human aortic endothelial cells (HAEC) were exposed to 10 μg/ml fine and ultrafine AP...

متن کامل

Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content

Forty-nine components of ambient particulate matter (PM) in size-fractionated PM were investigated at an urban background site in Katowice (Silesian Agglomeration in Southern Poland) in the non-heating season of 2012. PM was analyzed for two groups of carbon compounds (organic (OC) and elemental (EC) carbon, Lab OC-EC Aerosol Analyzer), five major water-soluble ions (NH4+, Cl-, SO42-, NO3-, and...

متن کامل

Effects of Heating Season on Residential Indoor and Outdoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in an Urban Birth Cohort.

Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)(2.5) were measured over two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental health perspectives

دوره 124 4  شماره 

صفحات  -

تاریخ انتشار 2016